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Abstract

Decades of unmanaged insecticide use and routine exposure to agrochemicals have left

many populations of malaria vectors in the Americas resistant to multiple classes of insecti-

cides, including pyrethroids. The molecular basis of pyrethroid resistance is relatively

uncharacterised in American malaria vectors, preventing the design of suitable resistance

management strategies. Using whole transcriptome sequencing, we characterized the

mechanisms of pyrethroid resistance in Anopheles albimanus from Peru and Guatemala.

An. albimanus were phenotyped as either deltamethrin or alpha-cypermethrin resistant.

RNA from 1) resistant, 2) unexposed, and 3) a susceptible laboratory strain of An. albimanus

was sequenced and analyzed using RNA-Seq. Expression profiles of the three groups were

compared based on the current annotation of the An. albimanus reference genome. Several

candidate genes associated with pyrethroid resistance in other malaria vectors were found

to be overexpressed in resistant An. albimanus. In addition, gene ontology terms related to

serine-type endopeptidase activity, extracellular activity and chitin metabolic process were

also commonly overexpressed in the field caught resistant and unexposed samples from

both Peru and Guatemala when compared to the susceptible strain. The cytochrome P450

CYP9K1 was overexpressed 14x in deltamethrin and 8x in alpha-cypermethrin-resistant

samples from Peru and 2x in deltamethrin-resistant samples from Guatemala, relative to the

susceptible laboratory strain. CYP6P5 was overexpressed 68x in deltamethrin-resistant

samples from Peru but not in deltamethrin-resistant samples from Guatemala. When com-

paring overexpressed genes between deltamethrin-resistant and alpha-cypermethrin-resis-

tant samples from Peru, a single P450 gene, CYP4C26, was overexpressed 9.8x (p<0.05)

in alpha-cypermethrin-resistant samples. In Peruvian deltamethrin-resistant samples, the

knockdown resistance mutation (kdr) variant alleles at position 1014 were rare, with
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approximately 5% frequency, but in the alpha-cypermethrin-resistant samples, the fre-

quency of these alleles was approximately 15–30%. Functional validation of the candidate

genes and the kdr mutation as a resistance marker for alpha-cypermethrin will confirm the

role of these mechanisms in conferring pyrethroid resistance.

Introduction

Between 2010 and 2016, malaria cases declined by 22% in the Americas. However, despite

these long-term reductions, recent substantial increases in case incidence were detected

between 2014 and 2016, with 9 out of 11 countries showing an increase of more than 20% in

malaria cases between 2015 and 2016 [1]. Of the 21 malaria-endemic countries in the region, 7

are currently categorized as being in either pre-elimination or elimination stages, yet an esti-

mated 120 million people remain at risk of infection, with 25 million people considered to be

at high risk [2]. Vector control interventions using insecticides, such as indoor residual spray-

ing (IRS) and long lasting insecticide-treated nets (LLINs), remain a cornerstone of malaria

prevention and control. However, their efficacy is threatened by the development of insecticide

resistance in mosquitoes [2].

Pyrethroids are the insecticide class most commonly used for mosquito control. However,

their widespread use has driven the evolution of highly resistant vector populations [3–5] and

pyrethroid ineffectiveness is increasingly reported in areas where pyrethroid-treated bednets

and pyrethroid-based IRS are used for malaria control [6–8]. In some cases, selection for pyre-

throid resistance may be driven or exacerbated by the widespread use of pyrethroids for agri-

cultural and domestic pest control [9, 10]. Mosquitoes can become resistant to insecticides by

several mechanisms: mutations in insecticide target proteins such as the voltage-gated sodium

channel (kdr) [11], acetylcholinesterase (AChE) [12] or gamma-aminobutyric acid receptors

[13] can lead to target-site insensitivity; increased biodegradation of insecticides can occur due

to enhanced detoxification by key metabolic enzymes such as cytochrome P450 monooxy-

genases, glutathione S-transferases and esterases [14]; thickening of the insect’s cuticle [15] or

behavioural avoidance [16] of insecticide treated surfaces can also increase survival. In order

to facilitate resistance management, it is crucial to characterise the resistance mechanisms in a

region. Markers for target site mutations such as kdr and ace-1 exist but on the other hand,

few such markers exist for metabolic resistance which is more complex due to the high diver-

sity of genes potentially involved in insecticide degradation pathways [3, 17]. Metabolic detoxi-

fication has also been shown to be driven by a set of enzymes which are often specific to an

insecticide. Elevated levels of cytochrome P450 are often observed in pyrethroid-resistant mos-

quitoes [18–20] while glutathione-s-transferases are a key metabolic mechanism of DDT resis-

tance [21]. As a result, there is an urgent need to disentangle metabolic resistance mechanisms

to detect the main genes involved in resistance to certain insecticides and to evaluate the risk

of cross-resistance between insecticide classes. This has led to the application of high-through-

put techniques such as RNA-Seq to study the transcriptomes of vectors of differing resistance

phenotypes, enabling the identification of candidate genes that can be utilized to develop novel

markers for resistance surveillance [22].

Anopheles albimanus is one of the principal malaria vectors in the Americas. Distributed

throughout Central America, South America and the Caribbean Islands where it is an impor-

tant contributor to malaria transmission in many coastal areas [23]. Resistance to several

insecticides has been reported in An. albimanus [24–29], and resistance patterns often appear

Gene expression in insecticide-resistant Anopheles albimanus
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to be associated with agricultural insecticide use [30–33], such as where larval habitats coincide

with areas of banana and rice cultivation [30]. Malathion resistance reported in the 1960s in

Central America was attributed to the proximity of mosquito larval habitats to cotton-growing

areas with heavy use of organophosphates to control agricultural pests [34, 35].

Compared to African malaria vectors, little is known about the mechanisms of insecticide

resistance in malaria vectors in the Americas, and this is the first study to elucidate resistance

mechanisms and detect genes driving pyrethroid resistance in a New World malaria vector.

Elucidation of the specific genes and mechanisms conferring resistance in An. albimanus will

allow for a more comprehensive understanding of how resistance develops and could poten-

tially be managed in the field.

Materials and methods

Study sites and samples

Adult female An. albimanus were collected in October 2015 from Puerto Pizarro, Tumbes,

Peru (3˚ 30’ 10S, 80˚ 23’ 38 W). Female mosquitoes were aspirated from livestock corrals and

transported live to the laboratory at the Instituto Nacional de Salud laboratory in Tumbes for

morphological identification and bioassay screening. Adult mosquitoes from El Terrero, La

Gomera in Escuintla, Guatemala (14˚08’ 31” N and 91˚05’ 54”W) were collected in November

2015 from livestock corrals which were located near sugarcane plantations and transported to

the insectary at the Center for Health Studies of Universidad del Valle de Guatemala in Guate-

mala City, where they were morphologically identified before bioassay screening. (Fig 1).

Attempts to rear offspring of field-collected mosquitoes were unsuccessful, so field-collected

adult mosquitoes were used for the bioassays. Mosquito samples from both sites were collected

from livestock corrals that were located on privately owned farms. Verbal permission to enter

the corrals to collect the mosquitoes was obtained from the farm owners. No protected or

endangered species were involved in the field studies.

An. albimanus mosquitoes from the insecticide susceptible Sanarate laboratory colony,

originating from Guatemala, were reared in the insectary at the Centers for Disease Control

and Prevention (CDC), Atlanta, Georgia, USA. Mosquitoes were maintained at a constant

27 ± 2˚C and 70 ± 10% humidity on a 14:10 hour light:dark cycle and adults were provided

10% sucrose ad libitum.

Insecticide susceptibility testing

Field-collected adult An. albimanus were tested for resistance to the diagnostic doses of delta-

methrin (12.5 μg/bottle) and alpha-cypermethrin (20.5 μg/bottle) using the CDC bottle bioas-

say [36]. Assays were carried out in four replicates, each containing approximately 25

individuals (range 23–38) per bottle. Mosquitoes alive after 30 minutes exposure to insecticide

were considered resistant. These are the two main insecticides used for public health in Peru

and Guatemala.

RNA extraction, RNA-Seq library preparation and sequencing

Three to five day-old adult non-bloodfed female mosquitoes from the Sanarate colony were

killed by freezing and stored at -80˚C until RNA extraction. For field-collected mosquitoes

used in the bottle bioassays, mosquitoes alive at the end of the 30 minute exposure period were

considered resistant. Both the resistant mosquitoes and unexposed individuals from each pop-

ulation were briefly chilled on ice and submerged in RNAlater, then shipped to the laboratory

at the CDC, Atlanta, USA for molecular analysis. For RNA-Seq analysis, 3 biological replicates
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with pools of 5 mosquitoes each were prepared according to the following: the susceptible labora-

tory colony Sanarate (San); field-collected mosquitoes from Guatemala not exposed to insecticide

(GTM-unx) and alive after exposure to deltamethrin (GTM-delta); field-collected mosquitoes

from Peru not exposed to insecticide (PER-unx), alive after exposure to deltamethrin (PER-delta)

and alive after exposure to alpha-cypermethrin (PER-acyp). The number of mosquitoes from La

Gomera, Guatemala alive after exposure to alpha-cypermethrin was insufficient for RNA extrac-

tion hence RNA-Seq analysis was not done for this group. RNA was extracted using the Applied

Biosystems Arcturus PicoPure RNA isolation kit (Arcturus, Applied Biosystems, USA) according

Fig 1. Locations from which mosquitoes were sampled in this study. Guatemala and Peru are shaded in dark grey and sample locations are labelled. The

dotted line indicates the equator.

https://doi.org/10.1371/journal.pone.0210586.g001
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to the manufacturer’s instructions. RNA concentration and integrity were assessed using the

Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) and Agilent 2100 Bioanlyzer

(Agilent Technologies, Palo Alto, CA, USA), respectively. RNA was DNase treated using Base-

line-ZERO DNase (Epicentre, Illumina) and ribosomal RNA depleted using Ribo-Zero rRNA

removal kit (Human/Mouse/Rat) (Epicentre, Illumina). Library preparation was carried out

using the ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre, Illumina) according to the

manufacturer’s instructions. Each library was barcoded and equal amounts of each library pooled

and sequenced (2x125bp paired-end) on an Illumina HiSeq 2500 sequencer, using v2 chemistry.

Sequencing was done at the Biotechnology Core Facility at CDC, Atlanta, USA.

RNA-Seq data analysis

Sequencing reads were trimmed to remove Illumina adapter sequence (a match of at least 3 bp

from the 3’ end of the read) using cutadapt v1.2.1[37] and to remove low quality sequences

using sickle v1.200 [38] with a minimum window quality score of 20. Read pairs where one or

both reads were shorter than 25 bp after trimming were removed. Trimmed reads were aligned

to the An. albimanus STECLA reference genome assembly AalbS2 [23] using ‘subjunc’, part of

the subread aligner package, version 1.5.0.p [39] with default parameters. Alignments were fil-

tered to remove reads with low mapping quality (<10). Descriptive statistics for the read

libraries and sequence alignments are shown in S1 Table. Filtered alignments comprised

between 46% and 80% of reads in the libraries.

Aligned read pairs were assigned to genes to quantify the levels of gene expression and

these data were used for differential gene expression analyses to compare putatively resistant

mosquitoes to (i) unexposed mosquitoes from the same location and (ii) the fully insecticide

susceptible laboratory colony. The alignments were used to quantify gene expression of the

gene set AalbS2.1. Tag counting (a ‘tag’ being a read pair or single, unpaired read) was done

using ‘featurecounts’, part of the subread aligner package, version 1.5.0.p [39, 40] Aligned

reads/pairs that overlapped coding sequence (CDS) features by at least 1 bp in the sense orien-

tation were counted. Tabulated tag counts were used as input for differential expression analy-

sis using edgeR [41]. To remove the effect of noise and very lowly expressed genes, only genes

where at least one sample had a tag count of 50 or more were analysed. For comparisons of

field-collected and laboratory colony mosquitoes, a critical value of 1% and absolute fold-

change of 2x were used to define differentially expressed genes. For comparisons among field-

collected mosquitoes, values of 5% and 1.5x were used.

Candidate resistance genes were identified based on the assumption that they are signifi-

cantly differentially expressed between resistant and susceptible mosquitoes. Comparisons

were done between resistant field mosquitoes and unexposed field mosquitoes (PER-delta vs

PER-unx, PER-acyp vs PER-unx and GTM-delta vs GTM-unx), between resistant field mos-

quitoes and laboratory susceptible mosquitoes (PER-delta vs San, PER-acyp vs San and GTM-

delta vs San), between mosquitoes resistant to different insecticides within the same geographi-

cal location (PER-delta vs PER-alpha), and between mosquitoes from different geographical

location resistant to the same insecticides (PER-delta vs GTM-delta).

Gene ontology enrichment analysis was carried out on differentially expressed gene sets

using blast2go [42]. Fisher’s exact test was used to identify gene ontologies significantly

enriched in over- and under-expressed gene sets relative to the rest of the genome.

Functional annotation improvement of gene set AalbS2.1

Our analysis used the An. albimanus STECLA reference genome assembly AalbS2 and annota-

tion gene set AalbS2.1 [43], downloaded from VectorBase [44]. The annotation gene set

Gene expression in insecticide-resistant Anopheles albimanus
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AalbS2.1 includes 12,232 protein coding gene annotations (corresponding to 12,110 genes,

with 122 additional isoforms). However, functional descriptions exist for only 780 of these. To

aid interpretation of results, all AalbS2.1 predicted proteins were used for similarity-based

functional annotation assignment using blast2go [42]. BLASTp searches of the non-redundant

protein database (nr) and InterProScan searches of the InterPro protein signature databases

were carried out and the results used to assign descriptions and gene ontologies to the An. albi-
manus proteins. This analysis assigned putative descriptions to 10,948 protein coding genes

and gene ontology descriptions to 9,117. All annotations are shown in S2 Table.

Identifying target site mutations using RNA-Seq datasets

To identify target site mutations in the different mosquito populations, RNA-Seq alignments

from pools of mosquitoes from the Sanarate laboratory colony and field-collected mosquitoes

from Guatemala (GTM-unx and GTM-delta) and Peru (PER-unx, PER-delta, PER-acyp), were

inspected at the relevant codon positions. SNPs were only counted from reads that completely

spanned the codon. The primary target of the analysis was the kdr mutation in the para voltage

gated sodium channel (VGSC) gene, conferring resistance to pyrethroids and DDT. Two addi-

tional target site mutations were also analysed: one in the Acetylcholinesterase-1 (ACE-1)

gene, associated with carbamate and organophosphate resistance, and one in the GABA gated

chloride channel A (GABA-a) gene, associated with resistance to the organochlorine dieldrin.

The voltage gated sodium channel gene (AALB007478) codon ‘1014’, containing kdr (‘knock-

down resistance’) mutations is at positions 3R:32,695,670–72 and the codon is TTG (Leucine,

susceptible) in STECLA. The Acetylcholinesterase-1 gene (AALB002313) codon ‘119’, contain-

ing ACE-1 mutations, the codon is GGC (Glycine, susceptible) in STECLA. The GABA gated

chloride channel (AALB015766) codon ‘296’, containing known Rdl (‘resistance to dieldrin’)

mutations in other Anopheles species, the codon is TGC (Alanine, susceptible) in STECLA.

Measurement of gene expression by quantitative PCR

Candidate genes that were significantly differentially expressed in the RNA-Seq analysis were

validated using quantitative PCR (qPCR). One microgram of RNA from 3 replicates of samples

resistant to alpha-cypermethrin from Peru were used to synthesize cDNA using the High-

Capacity cDNA reverse transcription kit (Applied Biosystems) with oligo-dT20 (NEB),

according to the manufacturer’s instructions. Only samples resistant to alpha-cypermethrin

from Peru were used for qPCR validation, as there was insufficient material remaining from

deltamethrin-resistant samples from Peru or Guatemala. The primers used are listed in S3

Table. Standard curves of Ct values for each gene were generated using a serial dilution of

cDNA, allowing assessment of PCR efficiency. The qPCR amplification was carried out on a

QuantStudio 6 Flex Real-Time PCR system (Applied Biosystems) using PowerUp SYBR Green

Master Mix (Applied Biosystems). cDNA from each sample was used as a template in a three-

step program: 50˚C for 2 minutes denaturation at 95˚C for 10 minutes, followed by 40 cycles

of 15 seconds at 95˚C, 1 minute at 60˚C and a last step of 15 seconds at 95˚C, 1 minute at

60˚C, and 15 seconds at 95˚C.

The relative expression level and Fold Change (FC) of each target gene from resistant field

samples relative to the susceptible lab strain were calculated using the 2−ΔΔCT method [45]

incorporating the PCR efficiency. Housekeeping genes ribosomal protein S17 (RPS17;

AALB004745) and Actin (AALB015449) were used for normalisation. A two-sample t-test was

used to assess the statistical significance of the results between samples.

Gene expression in insecticide-resistant Anopheles albimanus
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Identifying Cytochrome Oxidase I (COI) haplogroups of field-collected An.

albimanus from Guatemala and Peru

To identify genetic populations to which the field-collected mosquitoes belonged, we identified

the genotypes of the COI and compared them to published data for this gene. A 1,510 bp

sequence, KC354825.1, was chosen as a reference sequence and RNA-Seq reads were aligned

to it using subjunc [39]. Alignment statistics are shown in S6 Table. Alignments were viewed

using the Integrative Genomics Viewer, IGV [46], which was used to obtain consensus

sequences for each sample. These were added to a set of 112 sequences derived from mosqui-

toes from Pacific and Caribbean Colombia [47] and 27 sequences derived from mosquitoes

from throughout Panama [48]. All sequences were aligned using Muscle [49] within the Sea-

View alignment editor [50]. The alignment was edited to remove poorly aligning sequences

and trimmed to regions common to all sequences. This resulted in an alignment of 776 bp.

Sequence similarity was visualised using a multi-dimensional scaling plot, generated in R.

Results

Resistance profiles of An. albimanus from Guatemala and Peru

A total of 123 mosquitoes from Tumbes, Peru were phenotyped as alpha-cypermethrin resis-

tant or susceptible and 121 phenotyped as deltamethrin resistant or susceptible. After 30 min-

utes insecticide exposure, mosquitoes from Tumbes, Peru exhibited a mortality of 23.1%

(SEM = 4.05) for alpha-cypermethrin (n = 123) and 73.1% (SEM = 9.11) for deltamethrin

(n = 121). Mosquitoes from Escuintla, Guatemala exhibited a mortality of 84.5% (SEM = 5.07)

for alpha-cypermethrin (n = 97) and 75.0% (SEM = 7.00) for deltamethrin (n = 100). A hun-

dred and two and a hundred and six mosquitoes from the susceptible Sanarate colony were

phenotyped for alpha-cypermethrin and deltamethrin resistance respectively and showed

100% mortality as expected (Fig 2A).

Differential gene expression analyses

Results of differential gene expression analyses to compare the transcriptomic profiles of the

different mosquito populations and identify genes associated with insecticide resistance are

summarised in Table 1. Full results for all analyses are presented in S4 Table, and results of

gene ontology enrichment analyses for sets of differentially expressed genes are shown in S5

Table.

Differential gene expression associated with resistance. Detection of genes potentially

associated with deltamethrin and alpha-cypermethrin resistance followed a gradual analysis

with the hypothesis that the best candidate genes should be significantly differentially

expressed (p<0.05 and fold change (FC) >2) in most of the comparisons between resistant,

unexposed control and susceptible mosquitoes. A three pairwise comparison was conducted

for each insecticide: resistant vs susceptible (R-S), resistant vs unexposed control (R-C) and

unexposed control vs susceptible (C-S). We chose this approach in order to account for geo-

graphical background differences in the resistant vs susceptible (R-S) comparison, while the

resistant vs unexposed control (R-C) comparison was used to account for genes overexpressed

due to induction and the unexposed control vs susceptible (C-S) comparison was used to

account for genes that are constitutively overexpressed. With this approach, the genes that are

consistently over-expressed in different comparisons provide the best evidence of involvement

in insecticide resistance.

Differential gene expression associated with deltamethrin resistance. Comparing Guate-

malan mosquitoes surviving deltamethrin exposure to the Sanarate susceptible strain showed

Gene expression in insecticide-resistant Anopheles albimanus
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Fig 2. Pyrethroid resistance and gene expression profiles in An. albimanus. (A) Percent mortality in bottle bioassays for the susceptible Sanarate strain (dark

grey) and field populations from Guatemala (light grey) and Peru (white). Bars show the means of 4 replicate assays, with error bars indicating +/-1 standard

error of the mean. Remaining panels show volcano plots of gene expression for the comparisons: (B) Guatemala deltamethrin resistant vs. Sanarate; (C) Peru

deltamethrin resistant vs. Sanarate; (D) Peru alpha-cypermethrin resistant vs. Sanarate. Red, green and blue points on the volcano plots indicate three gene

families with major roles in metabolic resistance to insecticides: cytochrome P450 monooxygenases (CYP, red), glutathione S-transferases (GST, green) and

carboxylesterases (COE, blue). In each plot, genes overexpressed in the population are>0 on the x-axis. Vertical dotted lines indicate 2-fold expression

differences and the horizontal dotted line indicates a p-value of 0.01.

https://doi.org/10.1371/journal.pone.0210586.g002
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highly different transcriptomic profiles. The number of genes significantly and differentially

expressed (DE) for R-S 2965 (1011 up-regulated and 1954 down-regulated) and C-S 3889

(1442 up-regulated and 2447 down-regulated) was quite high The R-C group had 191 differen-

tially expressed genes (181 up-regulated and 10 down-regulated) (Fig 3A).

In comparing genes commonly differentially expressed in (R-C)/(R-S)/(C-S), among the 56

genes commonly overexpressed in all three comparisons, 3 were upregulated while 53 were

down regulated. Two of the overexpressed genes belong to the proteolysis activity GO term

(FC = 35.31 and 3.43) and one to the extracellular space GO term (FC = 2.66). Overexpression

of genes from detoxification gene families associated with metabolic resistance (cytochrome

P450 monooxygenases, glutathione S-transferases, and carboxylesterases) were not generally

apparent. Two glutathione-S-transferases GSTs1 (AALB007583, FC = 0.188) and GSTU1

(AALB006654, FC = 0.368) were down regulated in the R-S comparison and even lower in the

C-S comparison (FC = 0.085 and FC = 0.18). Two cytochrome P450 genes also down regulated

were CYP047 (AALB015530, FC = 0.383) and cytochrome b-561 (AALB005960, FC = 0.479)

in R-S, and in C-S (FC = 0.194 and FC = 0.203). One putative glucuronosyltransferase was also

down regulated (AALB003189, FC = 0.45 in R-S and FC = 0.18 in C-S).

A total of 2743 genes were differentially expressed commonly in the R-S and C-S groups

(Fig 3A). Among the top 10 genes, were four genes representing the DNA and RNA binding

GO terms in R-S (AALB007073, FC = 47.13, AALB015691, FC = 23.81, AALB008478, FC =

13.73 and AALB001046, FC = 13.55 and in C-S (AALB007073, FC = 30.974, AALB015691,

FC = 22.721, AALB008478, FC = 10.68 and AALB001046, FC = 17.37).One belonged to the

serine-type endopeptidase activity (AALB007819, FC = 34.05 in R-S; FC 33.707 in C-S) and

one to the chromosome passenger complex group (AALB010585, FC = 13.20 in both R-S and

C-S). The remaining four genes were not annotated. Among the remaining genes, FigFigseven

glutathione-S-transferase (GST) genes GSTd1, GSTd3, GSTe5 GSTe2 GSTe4 GSTu2 and

GSTD11 were down regulated and GSTd1 was upregulated (AALB015606, FC = 3.53 in R-S

and FC = 3.75 in C-S). Twenty-eight cytochrome P450s were DE with only two that were upre-

gulated in R-S, CYP6M1 (AALB015585, FC = 5.00 in R-S and FC = 2.80 in C-S) and CYP4C35

(AALB001020, FC = 2.08 in R-S and FC = 2.53 in C-S) (Fig 2B, Fig 4). Twenty-six cuticular

proteins were DE with only one overexpressed belonging to the CPLCG family (AALB000605,

FC = 2.80 in R-S and FC = 3.80 in C-S). Five putative UDP- glucuronosyltransferase were

downregulated in R-S and C-S (Table 2).

Table 1. Summary of results of differential gene expression analyses. DE = differentially expressed, FC = Fold change and adjP = P-value adjusted for multiple testing

by the method of Benjamini and Hochberg 1995 [51].

Condition-

1

Condition-2 Genes DE genes

(adjP<0.05)

DE genes

(adjP<0.01)

Condition-2 down Condition-2 up Condition-2 down Condition-2 up

tested (|FC|>2 &

adjP<0.01)

(|FC|>2 &

adjP<0.01)

(|FC|>1.5 &

adjP<0.05)

(|FC|>1.5 &

adjP<0.05)

San GTM-delta 8,720 4,743 3,726 1,852 978 2,494 2,010

San GTM-unx 8,860 6,122 5,336 2,414 1,421 3,021 2,619

GTM-unx GTM-delta 8,502 353 105 3 76 39 276

San PER-delta 8,785 565 302 167 135 298 267

San PER-unx 8,840 3,294 2,105 1,196 355 1,891 1,270

San PER-acyp 8,779 4,088 2,935 1,376 556 2,138 1,665

PER-unx PER-delta 8,656 7 5 5 0 5 2

PER-unx PER-acyp 8,577 6 5 3 2 4 2

PER-delta PER-acyp 8,585 16 9 5 4 8 8

GTM-delta PER-delta 8,630 2,859 1,893 564 1,157 1,198 1,661

https://doi.org/10.1371/journal.pone.0210586.t001
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Comparing Peruvian mosquitoes surviving deltamethrin exposure to the susceptible strain

showed a smaller number of DE genes: The number of genes significantly differentially

expressed (DE) for the R-S comparison was 519 (235 up- regulated and 284 down-regulated)

and 1754 for the C-S comparison (423 up-regulated and 1331 down-regulated). The R-C

group had only 7 (two up-regulated and five down-regulated) (Fig 3B).

In comparing genes commonly differentially expressed in (R-C)/(R-S)/(C-S), there was

only one common gene belonging to the calcium ion binding GO term in this comparison

which was down regulated (AALB000398 FC = 0.043 in R-S and FC = 0.214 in C-S and

FC = 0.050 in R-C).

There were 419 genes commonly differentially expressed between R-S and C-S, and possi-

bly related to resistance to deltamethrin in Peru. Of the top 10 genes, the top most upregulated

Fig 3. Venn diagrams summarizing the numbers of differentially expressed (DE) genes between resistant (R), unexposed (C) and susceptible (S) samples with a

transcription ratio� 2 fold change in either direction and a corrected p value < 0.05. A.) DE genes in the Guatemala deltamethrin resistant samples; B.) DE genes in

the Peru deltamethrin resistant samples; C.) DE genes in the Peru alpha-cypermethrin samples.

https://doi.org/10.1371/journal.pone.0210586.g003
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gene (AALB010850, FC 107.634 in R-S and 117.539 in C-S) was associated with chitin meta-

bolic process in GO terms. Two genes were associated with serine-type endopeptidase activity,

three with the oxidation-reduction process, one with extracellular activity, one with metal ion

binding and two were not annotated. Among the top 10 genes associated with insecticide

detoxification three genes that were relatively highly overexpressed were CYP6P5 (AALB0

15620, FC = 68.593 in R-S and 63.338 in C-S), CYP6P15P (AALB015617, FC = 58.081 in R-S

and 34.535 in C-S) and CYP6AA2 (AALB015588, FC = 26.722in R-S and 22.192 in C-S).

Other genes include one glutathione-S-transferase GSTu2 (AALB015697 R-S FC = 0.26 and

C-S FC = 0.18), that was down regulated.

Despite the smaller number of DE genes overall from Peru, a number of genes associated

with insecticide resistance were highly overexpressed (Fig 2C, Fig 4). Seventeen cytochrome

P450 genes were DE, with 14 upregulated and 3 downregulated in both R-S and C-S. All genes

had a fold change that was slightly higher in the R-S group than in the C-S group. The most

overexpressed P450 was CYP6P5 (AALB015620, FC 68.60). Six putative UDP-glucuronosyl-

transferases were overexpressed, with the highest showing a fold change of 7.64 (AALB000

333) (Table 2). Other genes included twelve cuticular proteins that were all down regulated in

both the R-S and C-S comparisons, one carboxylesterase (AALB007549, R-S FC = 0.18 and

C-S FC = 0.31) that was downregulated and one glutathione-S-transferase GSTu2 (AALB

015697 FC = 0.27) that was down regulated in R-S and in C-S FC = 0.19.

There were 309 genes commonly differentially expressed when a direct comparison of del-

tamethrin resistant An. albimanus from Peru and Guatemala was done (Fig 5A). Ten differen-

tially expressed genes belonged to the following GO-terms: two to the chitin metabolic

process, four to the serine-type endopeptidase activity, one to oxidation-reductions process

and one to transferase activity; two of the genes were not annotated. Genes related to insecti-

cide detoxification, were cytochrome P450 CYP026 (AALB015585, FC 10.93 in Per-delta and

5.00 in GTM-delta) and a UDP-glucuronosyltransferase (AALB000333, FC 7.64 in PER-delta

and 2.13 in GTM-delta).

Other genes related to insecticide detoxification among the 309 genes were 12 cuticular

genes that were all down regulated in both PER-delta and GTM-delta. More so in the GTM-

delta samples. One putative carboxylesterase AALB007549 was down regulated with FC 0.188

in PER-delta and at FC 0.191 in GTM-delta. Two putative UDP-glucuronosyltransferases

((AALB000333, FC 7.64 in PER-delta and FC 2.13 in GTM-delta), (AALB004537, FC 3.61 in

PER-delta and FC 3.03 in GTM-delta)) were both overexpressed in the two groups. Unlike the

comparisons mentioned above, there were only eight cytochrome P450 shared between the

Peruvian deltamethrin resistant mosquitoes and Guatemalan deltamethrin resistant mosqui-

toes. Of these, only CYP026 (AALB015585, FC 10.93 in PER-delta and FC 5.00 in GTM-delta)

was commonly upregulated in both groups. Three cytochrome P450s, CYP030 (AALB015

737), CYP043 (AALB015506) and CYP042 (AALB015507) were all down regulated in both

groups. The remaining four CYP069 (AALB015589), CYP066 (AALB015514), CYP023

(AALB015574) and CYP056 (AALB015651) were all overexpressed in PER-delta and not in

GTM-delta. The differing transcriptomic profiles seen between Guatemala and Peru were also

reflected in the patterns of gene ontology enrichment in DE genes (S5 Table). In Peruvian del-

tamethrin resistant mosquitoes, a small number of ontologies were enriched in genes overex-

pressed relative to susceptible mosquitoes. Many of these were ontologies associated with

cytochrome P450 monooxygenases, such as “iron ion binding” (GO:0005506), “heme binding”

(GO:0020037), “oxidoreductase activity, acting on paired donors, with incorporation or reduc-

tion of molecular oxygen” (GO:0016705) and “oxidation-reduction process” (GO:0055114).

Another, “transferase activity, transferring hexosyl groups” (GO:0016758) may reflect the

overexpression of UGTs and several ontologies describing serine-type peptidases activity
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Fig 4. Heatmaps summarizing expression of detoxification genes, showing log2 fold-change values relative to the susceptible

strain Sanarate on a blue-red scale (red = overexpressed). Gene families are: (A) cytochrome P450 monooxygenases; (B)

glutathione S-transferases; (C) carboxylesterases. Gene names are based on orthology to An. gambiae (an asterisk denotes ambiguous

orthology). Genes on chromosome arms 2R, 2L, 3R, 3L and X are ordered from top to bottom. San = Sanarate; GTM = Guatemala;

PER = Peru; unx = unexposed; delta = deltamethrin-resistant; acyp = alpha-cypermethrin-resistant.

https://doi.org/10.1371/journal.pone.0210586.g004
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Table 2. Differentially expressed detoxification genes common in the comparisons of resistant vs. susceptible (R-S) and control vs. susceptible (C-S) groups, with a

corrected p value < 0.05. Gene description is based on orthology to An. gambiae.

Gene ID Gene description GTM-delta R-S

fold change

GTM-unx

C-S

fold change

PER-delta

R-S

fold change

PER-acyp R-S

fold change

PER-unx

C-S

fold change

AALB015620 CYP6P5 68.60 72.57 63.34

AALB015617 CYP6P15P 58.10 35.47 34.58

AALB015588 CYP6AA2 26.75 13.48 22.20

AALB003283 CYP9K1 14.43 8.36 8.71

AALB015585 CYP6M1 5.00 2.79 10.93 5.58 7.74

AALB015589 CYP6AA1 0.37 0.33 7.08 4.29 4.91

AALB015455 CYP6Z2/CYP6Z3 4.92 5.23 3.69

AALB015619 CYP6P3 4.83 3.06 3.43

AALB010082 CYP9J5 4.74 2.89

AALB015621 CYP6P4 3.92 2.84 2.37

AALB006365 CYP307A1 3.65 4.82

AALB015703 CYP4H15/CYP4H25/CYP4H27 3.55 2.62

AALB015735 CYP6M3 3.50 2.89 3.38

AALB015574 CYP6Y2 0.33 0.34 2.36 2.11

AALB015507 CYP4H24 0.32 0.30 0.41 0.28 0.23

AALB015737 CYP6M4 0.44 0.28 0.35 0.25 0.37

AALB015506 CYP4H24 0.40 0.20 0.24 0.21 0.23

AALB015526 CYP4C26 429.96 384.10

AALB001852 Cytochrome P450 3.37 3.67

AALB001475 CYP4H18 0.38 0.25 0.43 0.46

AALB010702 Cytochrome P450 0.41 0.41

AALB001020 CYP4C35 2.08 2.53

AALB015515 CYP6AG2 0.39 0.24

AALB008236 CYP325K1 0.38 0.24

AALB015514 CYP6AG1 0.36 0.32

AALB015535 CYP4D22 0.35 0.34

AALB015528 CYP12F1 0.35 0.23

AALB015584 cytochrome_P450 0.32 0.13

AALB015623 CYP6P2 0.31 0.22

AALB007673 CYP4G16 0.31 0.18

AALB015652 CYP9J3 0.30 0.27

AALB015531 CYP12F4 0.28 0.21

AALB015651 CYP9J4 0.28 0.24

AALB015552 CYP305A1 0.26 0.13

AALB015509 CYP9M1 0.26 0.20

AALB006158 CYP301A1 0.23 0.22

AALB007373 CYP6AJ1 0.17 0.20

AALB006097 CYP49A1 0.14 0.13

AALB006842 CYP4G17 0.12 0.09

AALB015653 CYP9L1 0.08 0.10

AALB008278 CYP325F1/AgCYP325F2 027 0.17

AALB009920 CYP6AF1/AgCYP6AF2 0.25 0.22

AALB015585 CYP6M1 5.00 2.79

AALB001020 CYP4C35 2.08 2.53

AALB000333 Putative glucuronosyltransferase 7.64 7.06 7.05

(Continued)
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(GO:0004252, GO:0008236, GO:0017171, GO:0004175) could be associated with the role of

peptidases in mitigating stress caused by pesticide exposure [52]. These ontologies also appeared

to be enriched in the Peruvian deltamethrin-resistant mosquito samples relative to the Guate-

malan deltamethrin-resistant mosquito samples. By contrast, the (larger) gene set overexpressed

in Guatemalan deltamethrin resistant mosquitoes relative to susceptible mosquitoes was signifi-

cantly enriched for a large number of ontologies, many of which were associated with DNA rep-

lication and cell cycle processes (S5 Table). This could indicate that the major differences

between the mosquito samples compared are differences in the level of active growth and cell

proliferation, possibly reflecting a systematic difference in age and/or physiological status of the

samples (which could not be controlled for in the field-collected mosquitoes).

Differential gene expression associated with alpha-cypermethrin resistance. For the

Peruvian mosquitoes surviving alpha-cypermethrin exposure, the number of genes signifi-

cantly differentially expressed between resistant and susceptible was 2068 (605 upregulated

and 1463 downregulated), six (2 upregulated and 4 down-regulated) between resistant and

Table 2. (Continued)

Gene ID Gene description GTM-delta R-S

fold change

GTM-unx

C-S

fold change

PER-delta

R-S

fold change

PER-acyp R-S

fold change

PER-unx

C-S

fold change

AALB005262 Putative glucuronosyltransferase 3.63 2.27 2.83

AALB010106 Putative glucuronosyltransferase 2.65 2.79 2.77

AALB004669 Putative glucuronosyltransferase 4.62 2.1 2.71

AALB015521 Putative glucuronosyltransferase 3.53 2.83 2.48

AALB006205 Putative glucuronosyltransferase 2.76 2.19 2.16

AALB006205 Putative glucuronosyltransferase 0.40 0.32

AALB015524 Putative glucuronosyltransferase 0.40 0.26

AALB001015 Putative glucuronosyltransferase 0.39 0.29

AALB006116 Putative glucuronosyltransferase 0.34 0.16

AALB015522 Putative glucuronosyltransferase 0.28 0.16

AALB015606 glutathione S-transferase (GSTd1) 3.54 3.76 2.06 2.01

AALB015683 glutathione S-transferase (GSTd3) 0.29 0.36

AALB015734 glutathione S-transferase (GSTe5) 0.29 0.16

AALB015731 glutathione S-transferase (GSTe2) 0.16 0.12

AALB015733 glutathione S-transferase (GSTe4) 0.15 0.11

AALB015697 glutathione S-transferase (GSTu2 0.14 0.08 0.27 0.22 0.19

AALB015675 glutathione S-transferase (GSTd11) 0.09 0.08

AALB007583 glutathione S-transferase (GSTs1) 0.25 0.25 0.25

https://doi.org/10.1371/journal.pone.0210586.t002

Fig 5. The Venn diagrams summarizing differentially expressed genes with a transcription ratio� 2 fold change in

either direction and a corrected p value< 0.05 between A.) Deltamethrin resistant samples from Peru and Guatemala;

B.) Deltamethrin and alpha-cypermethrin resistant samples from Peru.

https://doi.org/10.1371/journal.pone.0210586.g005
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control and 1754 (423 up-regulated and 1331 down-regulated) between control and suscepti-

ble (Fig 3C).

There were no DE genes shared between R-S, R-C and C-S groups. However, there were

1489 DE genes common between R-S and C-S. Of the top 10 genes, the top most upregulated

gene AALB000941, FC = 2697.544, is not currently annotated but falls under a serine-type

endopeptidase inhibitor GO term, followed by a very highly upregulated cytochrome P450

CYP4C26 (AALB015526, FC = 429.960) that only appeared in the alpha-cypermethrin resistant

samples. This extreme value is likely due to the gene not being expressed at detectable levels in

the susceptible strain, rather than high absolute levels of the AALB015526 transcript in PER-

acyp.

Two other detoxification genes among the top 10 were CYP6P5 (AALB015620, FC = 72.567)

and CYP6P15P (AALB015617, FC = 35. 469). The other six genes fall in the GO terms serine-

type endopeptidases, one to extracellular region, one to sensory perception of taste and one to

metal ion binding.

Other genes related to insecticide detoxification were, three glutathione S-transferases one-

upregulated (AALB015606 GSTd1 FC = 2.06) and two down-regulated (AALB007583 GSTs1

FC = 0.25 and AALB015697 GSTu2 FC = 0.22) a carboxylesterase that was down- regulated

(AALB006112, FC = 0.366), and two down regulated cuticular genes belonging to the cuticular

protein RR-1 family. Similar to the Peruvian deltamethrin resistant samples, seventeen cyto-

chrome P450 genes were DE with 12 upregulated and 5 downregulated. Similarly, six putative

UDP-glucuronosyltransferases were also overexpressed with the highest showing a fold change

of 7.06 (AALB000333) (Table 2, Fig 4).

When alpha-cypermethrin-resistant and deltamethrin-resistant mosquitoes from Peru were

compared there were 434 DE genes shared (Fig 5B). Of the top 10 shared genes, three were cyto-

chrome P450s CYP6P5 (AALB015620, FC = 68.601 in PER-delta, FC = 72.567 in PER-acyp,

CYP6P15P (AALB015617, FC = 58.101 in PER-delta, FC = 35.469 in PER-acyp) and CYP6AA2

(AALB015588, FC = 26.754 in PER-delta, FC = 13.483 in PER-acyp). The remaining genes fell

under the following GO terms: chitin binding (AALB010850, FC = 108.010 in PER-delta;

FC = 193.017 in PER-acyp), serine-type endopeptidase (AALB007819, FC = 78.629 in PER-

delta; FC = 53.236 in PER-acyp), metal ion binding (AALB007464, FC = 37.896 in PER-delta,

FC = 34.647 in PER-acyp), extracellular region (AALB006948, FC = 35.436 in PER-delta;

FC = 19.780 in PER-acyp) and acyl-CoA metabolic process (AALB010577, FC = 26.479 in

PER-delta and FC = 16.082 in PER-acyp). Two genes were not annotated (AALB000689

(FC = 87.346 in PER-delta, FC = 314.417 in PER-acyp and AALB000331 (FC 36.980 in PER-

delta, FC 41.413 in PER-acyp). Among the major detoxification enzyme families, the pattern

of overexpression is broadly similar to that seen in deltamethrin resistant mosquitoes, with

CYP6 cluster genes overexpressed, though the X chromosome genes CYP9K1 (AALB003283) and

CYP6M1 (AALB015585) were less highly overexpressed in alpha-cypermethrin-resistant than in

deltamethrin-resistant mosquitoes. Six putative UDP-glucuronosyltransferases were common in

both PER-delta and PER-acyp at comparable levels (Table 2). Similarly, a group of cytochrome

P450 genes were shared between the two samples with an exception of CYP9J5 (AALB010082),

CYP307A1 (AALB006365), CYP4H15/CYP4H25/CYP4H27 (AALB015703) and CYP6Y2

(AALB015574) which were only DE in the PER-delta group while CYP4C26 (AALB015526),

CYP4H18 (AALB001475) and two putative cytochrome P450 genes (AALB015526 and

AALB010702) were only in the PER-acyp group (Table 2). Other genes related to insecticide

detoxification that were common between deltamethrin and alpha-cypermethrin resistant genes

were thirteen cuticular proteins with only one upregulated in both samples (AALB001993, PER-

delta FC = 2.128 and FC = 2.222 PER-acyp) and one carboxylesterase that was also downregulated

in both samples (AALB007549, FC = 0.18 in PER-delta and FC = 0.35 in PER-acyp).
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Validation of relative expression levels estimated by RNA-Seq with

quantitative RT-PCR

Quantitative RT-PCR was used to validate the RNA-Seq results of seven genes among the most

overexpressed. The qRT-PCR results broadly supported the directionality of the changes in

expression levels, although for several genes, the magnitude of the expression difference was

smaller than estimated by RNA-Seq (S1 Fig). The overexpression in the PER-acyp and PER-

unx were very similar probably due to overall high levels of resistance in field populations. The

overexpression of the CYP4C26 gene detected by qRT-PCR was different possibly due to

RNA-Seq over-estimation.

A significant correlation between the qRT-PCR and RNA-seq results was observed as

shown in Fig 6 below (R2 = 0.489; P = 0.004).

Identification of target site mutations from RNA-Seq data

RNA-Seq alignments were used to identify and roughly quantify target site mutations associ-

ated with insecticide resistance (Tables 3, 4 and 5).

Target site mutations in the para voltage gated sodium channel (VGSC) gene (target site of

pyrethroids and DDT) have previously been reported in An. albimanus [53]. Two resistance-

associated amino acids at codon 1014, TCG (Serine) and TGT (Cysteine), were detected at low

levels in some Peruvian samples but were not detected in any Guatemalan samples (Table 3).

In unexposed control mosquitoes from Peru, TCG (Ser) was seen at 0%, 7% and 10% in the

three replicate pools. In deltamethrin-resistant mosquitoes from Peru, no resistance alleles

were detected, while in alpha-cypermethrin-resistant mosquitoes, one pool showed 0% resis-

tant alleles, in another TCG (Ser) was seen at 14% and in another TGT (Cys) was seen at 26%

Fig 6. Correlation between RNA-Seq and qRT-PCR data of selected genes from the list of the up regulated transcripts.

https://doi.org/10.1371/journal.pone.0210586.g006
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(Table 3). While these counts indicate the presence of a codon and an approximate quantifica-

tion, they cannot be directly translated into allele frequencies as the sequence reads are sam-

pled from a pool of transcripts from a pool of mosquitoes, with potentially different levels of

contribution from each mosquito and allele. In order to appropriately represent the allele fre-

quency in the different populations, allele frequency should be determined from much larger

numbers of individual mosquitoes. However, the pools used give a broad picture of point

mutations segregating in each population.

The samples were also analysed to detect known resistance mutations associated with other,

non-pyrethroid insecticides. Target site mutations in the Acetylcholinesterase-1 (ACE-1) gene

(target of carbamates and organophosphates) have been reported in An. albimanus [54]. A

marked contrast between the two study populations was seen, with a resistance allele predomi-

nating in Peruvian samples while completely absent from the Guatemalan samples (Table 4).

This allele, TCC (Ser), was seen at 40%, 60%, 63.64% in unexposed mosquitoes, at 67%, 83%

and 83% in deltamethrin-resistant and 60%, 76% and 100% in alpha-cypermethrin-resistant

mosquitoes. Another allele, GCC (Ala), was common (up to 60%) in some of the Peruvian

samples, while absent from Guatemalan samples, though whether this allele confers resistance

is not known. No target site mutations in the GABA gated chloride channel A (GABA-a; target

of the banned pesticide dieldrin, as well as ivermectin and fipronil) have been reported in An.

albimanus. Again, differences were detected between the two populations, with a resistance

allele, TCA (Ser), apparently fixed in the Peruvian population (100% frequency in all samples)

and seen at lower frequencies in the Guatemalan samples (between 0% and 33%). The suscep-

tible Sanarate strain also appears to be nearly fixed for TCA (Ser), with 95%, 100% and 100%

frequencies in the three replicate pools. Two alleles of unknown resistance status, CCA (Pro)

and GTA (Val), were detected at low levels in two Sanarate samples (Table 5).

Table 3. Codons present in RNA-seq reads at the kdr position ‘1014’ of the voltage gated sodium channel gene.

Susceptible Susceptible Susceptible Resistant Resistant

Sample Coverage TTG (Leu) CTG (Leu) TTA (Leu) TCG (Ser) TGT (Cys)

STECLA 1 1 0 0 0 0

San-1 85 85 0 0 0 0

San-2 76 76 0 0 0 0

San-3 65 64 1 0 0 0

GTM-unx-1 61 60 0 1 0 0

GTM-unx-2 29 29 0 0 0 0

GTM-unx-3 31 31 0 0 0 0

GTM-delta-1 23 23 0 0 0 0

GTM-delta-2 10 10 0 0 0 0

GTM-delta-3 16 16 0 0 0 0

PER-unx-1 52 52 0 0 0 0

PER-unx-2 75 70 0 0 5 0

PER-unx-3 29 26 0 0 3 0

PER-delta-1 67 67 0 0 0 0

PER-delta-2 42 41 1 0 0 0

PER-delta-3 25 25 0 0 0 0

PER-acyp-1 29 25 0 0 4 0

PER-acyp-2 34 34 0 0 0 0

PER-acyp-3 19 13 1 0 0 5

https://doi.org/10.1371/journal.pone.0210586.t003
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Table 4. Codons present in RNAseq reads at position ‘119’ of the Acetylcholinesterase-1 gene.

Susceptible Resistant Unknown

Sample Coverage GGC (Gly) TCC (Ser) GCC (Ala)

STECLA 1 1 0 0

San-1 6 6 0 0

San-2 3 3 0 0

San-3 3 3 0 0

GTM-unx-1 3 3 0 0

GTM-unx-2 2 2 0 0

GTM-unx-3 2 2 0 0

GTM-delta-1 3 3 0 0

GTM-delta-2 0 0 0 0

GTM-delta-3 3 3 0 0

PER-unx-1 5 0 3 2

PER-unx-2 5 0 2 3

PER-unx-3 11 2 7 2

PER-delta-1 15 0 10 5

PER-delta-2 12 1 10 1

PER-delta-3 6 1 5 0

PER-acyp-1 10 0 6 4

PER-acyp-2 17 2 13 2

PER-acyp-3 2 0 2 0

https://doi.org/10.1371/journal.pone.0210586.t004

Table 5. Codons present in RNAseq reads at position ‘296’ of the GABA gated chloride channel A subunit gene.

Susceptible Resistant Unknown Unknown

Sample Coverage GCA (Ala) TCA (Ser) CCA (Pro) GTA (Val)

STECLA 1 1 0 0 0

San-1 20 0 20 0 0

San-2 40 0 38 2 0

San-3 44 0 44 0 0

GTM-unx-1 12 11 1 0 0

GTM-unx-2 6 4 2 0 0

GTM-unx-3 10 10 0 0 0

GTM-delta-1 10 9 0 0 1

GTM-delta-2 17 15 2 0 0

GTM-delta-3 2 2 0 0 0

PER-unx-1 16 0 16 0 0

PER-unx-2 22 0 22 0 0

PER-unx-3 9 0 9 0 0

PER-delta-1 36 0 36 0 0

PER-delta-2 21 0 21 0 0

PER-delta-3 17 0 17 0 0

PER-acyp-1 5 0 5 0 0

PER-acyp-2 10 0 10 0 0

PER-acyp-3 6 0 6 0 0

https://doi.org/10.1371/journal.pone.0210586.t005
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Identifying Cytochrome Oxidase I (COI) haplogroups of field-collected An.

albimanus from Guatemala and Peru

To identify genetic populations to which the field-collected mosquitoes belonged, we identified

the genotypes of the COI and compared them to published data for this gene (S2 Fig). The

Peruvian population sequences clustered with those from Pacific Colombia, while both the

Sanarate and Guatemalan sequences clustered with a subset of sequences from Panama, which

appears to be a heterogeneous population, possibly reflecting its location linking Central

America and South America. Understanding the population structure of An. albimanus is

important for predicting how insecticide resistance might spread across the species’ range and

the genetic background against which it arises. The results show that the populations from

Guatemala and Peru belong to different haplogroups and that barriers to gene flow in addition

to geographical distance may exist that could limit the spread of particular resistance mecha-

nisms among mosquito populations.

Discussion

Unlike in sub-Saharan Africa where multiple research groups are actively elucidating the com-

plex biochemistries and molecular bases for insecticide resistance in malaria vectors, very little

is known about the mechanisms that underpin insecticide resistance in malaria vectors in the

Americas. The results from this study demonstrated that An. albimanus from the study loca-

tions in Peru and Guatemala were resistant to the two pyrethroids tested, deltamethrin and

alpha-cypermethrin and this resistance is mainly metabolic driven by over-expression of cyto-

chrome P450s.

In the samples from Peru, several detoxification genes from the cytochrome P450 monoox-

ygenase family that have previously been associated with pyrethroid resistance in other species

were highly overexpressed. These include, CYP6P5, CYP9K1, CYP6AA2, CYP6Z2/CYP6Z3,

CYP6AA1, CYP6P15P, CYP6M1, CYP6M4, CYP6P3, CYP6P4 and CYP6M3. There were no

significant differences in gene expression levels when comparing the deltamethrin and alpha-

cypermethrin samples at p<0.01. However, a single P450 gene CYP4C26 was overexpressed

9.8 fold at p<0.05 in the alpha-cypermethrin resistant samples. Functional validation of the

role of this gene in alpha-cypermethrin metabolism could provide a candidate gene that could

potentially be used to distinguish resistance between the two pyrethroids. Similarity of gene

expression for mosquitoes resistant to both pyrethroids suggests that genes involved are likely

metabolically efficient to detoxify most pyrethroids as seen in other mosquitoes species for

genes such as CYP6P3 and CYP6M2 in An. gambiae [55, 56] or CYP6P9a/b and CYP6M7 for

An. funestus [19, 57].

Among the genes found to be overexpressed in the resistant mosquitoes, CYP6AA2 has

been previously reported to be associated with deltamethrin resistance in Anopheles minimus
[58]. CYP6AA1 has also been reported to be overexpressed in An. gambiae from Burkina Faso

resistant to deltamethrin and permethrin [59] and was recently shown to be able to metabolise

both type I and type II pyrethroids in An. funestus [60]. This suggests that some resistance

mechanisms may be shared across Anopheles species worldwide probably as a result from

shared ancestral evolutionary adaptation to xenobiotics.

Genes among the top 10 commonly shared in GTM-delta, PER-delta and PER-acyp when

the resistant versus susceptible and control versus susceptible groups were compared were

genes belonging to serine-type endopeptidase and genes related to extracellular space in GO

terms. Serine-type endopeptidases were also reported to be enriched in population resistant to

permethrin and deltamethrin [61] and also in DDT resistant strains of An. gambiae [62]. Ser-

ine type proteases involved in immune responses have been isolated in An.gambiae [63] hence
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the up-regulation of these proteases may act as defence mechanisms against the exposure to

insecticide.

The most striking results however, were from the comparison of the deltamethrin resistant

samples from the two locations in Peru and Guatemala with the susceptible laboratory strain.

There was a marked contrast in gene expression specifically from the cytochrome P450 mono-

oxygenase family. When taking in to consideration only the genes that were commonly

expressed in the comparison of resistant versus susceptible and control versus susceptible, in

deltamethrin-resistant samples from Guatemala, there were 28 differentially expressed cyto-

chrome P450s with a fold change ranging from 5.0 to 0.12. Of these, only two were signifi-

cantly overexpressed, CYP6M1 with a fold change of 5.0 at p<0.01 and CYP4235 with fold

change of 2.08 at p<0.05. It is not clear why many of the differentially expressed genes related

to insecticide detoxification were down-regulated in the Guatemala samples; this may have

been due to an overall lower frequency of pyrethroid resistance in this population, as evi-

denced by the bioassay data. On the other hand, the deltamethrin resistant samples from Peru

had 17 differentially expressed cytochrome P450s with a fold change ranging from 68.60 to

0.23. Of these, 15 significantly upregulated at p<0.01 with a fold change ranging from 68.60 to

2.48. The main cytochrome P450s overexpressed more than 10 times were CYP6P5 FC = 68.6,

CYP6P15P FC = 58.1, CYPAA2 FC = 26.75, CYP9K1 FC = 14.43 and CYP6M1 FC = 10.93.

Two overexpressed insecticide detoxification genes that were shared between the two

groups using the resistant susceptible pairwise comparison were CYP026 (AALB015585) and a

putative UDP-glucuronosyltransferase (AALB000333). Functional validation of these genes

may indicate that they play an important role in deltamethrin detoxification regardless of the

geographical location.

The striking difference in transcriptional profiles of mosquitoes from the two locations

could indicate a systematic difference between the samples. A major limitation of this study

was our inability to rear offspring of field collected mosquitoes and thereby control for the age

of the adult mosquitoes tested in the bioassays. A systematic difference in the age profile of the

mosquitoes tested could affect the gene expression profiles seen. Indeed, the Guatemalan mos-

quitoes showed over-expression of many genes associated with DNA replication and cell cycle

processes, perhaps indicating young, developing mosquitoes with actively proliferating tissues.

Age is negatively correlated with ability to survive insecticide exposure, which may account for

the survival of a subset of the exposed mosquitoes. However, using wild caught samples allows

for the opportunity to fully mimic adaptive processes occurring in nature. Comparison of

these samples to the fully susceptible laboratory strain enabled the detection of differences aris-

ing due to factors unique to their respective natural environments. The results for the Peruvian

samples clearly show a transcriptomic profile that unmistakably implicates a group of known

resistance genes.

In addition, the differences in gene expression profiles could at least partially arise from

other types of selection pressures unique to the two geographical settings studied. In this

study, samples from Guatemala were collected in close proximity to sugarcane, palm oil and

banana plantations while the samples from Peru were collected in close proximity to rice and

banana fields. Previous studies have reported the influence of agriculture on the evolution of

insecticide resistance in mosquitoes [64–66]. Regional variations in agricultural pesticide use

may have contributed to the selection pressures on the two populations studied here, although

further research would be needed to determine the predominant agrochemicals and their fre-

quency of application around mosquito habitats.

There was no significant difference in gene expression between the resistant samples and

the unexposed samples. This is perhaps due to the fact that resistance is mainly conferred

through a constitutive over-expression of resistance genes in the respective samples, i.e. PER-
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unx, PER-delta, PER-acyp, and GTM-unx and GTM-delta. The difference in over-expression

of the detoxification genes was not high enough to be captured by the differential gene expres-

sion analysis.

Most of the current DNA markers available for monitoring resistance to pyrethroids are

based on the detection of mutations on insecticide target sites. Multiple studies are currently

underway in an effort to identify markers of metabolic resistance, as these mechanisms are

now thought to be the primary cause of vector control failure. The use of high-throughput

sequencing techniques such as RNA sequencing utilized in this study, provide an unprece-

dented level of detail which in turn led to the identification of enormous numbers of differen-

tially expressed genes. This, however, presents a challenge in the identification of candidate

markers underlying resistance. In addition, most metabolic detoxification genes belong to

large gene families and are seen to be species specific. In An. gambiae, CYP6P3 and CYP6M2

have been shown to metabolize permethrin and deltamethrin [20, 56, 67]. While in the Asian

malaria vector An. minimus two P450s, CYP6P7 and CYP6AA3, have been shown to metabo-

lize the pyrethroids permethrin, cypermethrin and deltamethrin [68, 69]. As detected in the

present study, geography can also play a role in mechanism heterogeneity such as noted in the

significant differences in the resistance profiles of Anopheles funestus from Zambia, Mozam-

bique and Malawi [19]. As a consequence, novel markers specific to species and also to geo-

graphical region may be required. However, with the cost of sequencing steadily decreasing,

identification of these markers will become more achievable and help to provide a more robust

basis for understanding and managing insecticide resistance.

In conclusion, An. albimanus mosquitoes from Guatemala in Central America and from the

Pacific coast of Peru in South America showed contrasting patterns reflected in putatively differ-

ent resistance mechanisms. Both showed resistance to the pyrethroids deltamethrin and alpha-

cypermethrin, but the Peruvian population appeared to be more highly resistant to alpha-cyper-

methrin than the Guatemalan population. Transcriptome profiling showed contrasting patterns

of gene expression between the two populations. In the Peruvian population, a number of detox-

ification genes that have been implicated in metabolic resistance to insecticides in other mos-

quito species were found to be highly overexpressed. Target-site mutations associated with

resistance to pyrethroids and other insecticides also appeared to be more common in the Peru-

vian mosquitoes. The study identifies genes associated with pyrethroid resistance in An. albima-
nus but highlights the challenges related to geographic heterogeneities in resistance mechanisms.
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